Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Blood Adv ; 7(14): 3403-3415, 2023 07 25.
Article in English | MEDLINE | ID: covidwho-2258256

ABSTRACT

In order to elucidate mechanisms for severe acute respiratory syndrome coronavirus 2 vaccination success in hematological neoplasia, we, herein, provide a comprehensive characterization of the spike-specific T-cell and serological immunity induced in 130 patients in comparison with 91 healthy controls. We studied 121 distinct T-cell subpopulations and the vaccination schemes as putative response predictors. In patients with lymphoid malignancies an insufficient immunoglobulin G (IgG) response was accompanied by a healthy CD4+ T-cell function. Compared with controls, a spike-specific CD4+ response was detectable in fewer patients with myeloid neoplasia whereas the seroconversion rate was normal. Vaccination-induced CD4+ responses were associated to CD8+ and IgG responses. Vector-based AZD1222 vaccine induced more frequently detectable specific CD4+ responses in study participants across all cohorts (96%; 27 of 28), whereas fully messenger RNA-based vaccination schemes resulted in measurable CD4+ cells in only 102 of 168 participants (61%; P < .0001). A similar benefit of vector-based vaccination was observed for the induction of spike-specific CD8+ T cells. Multivariable models confirmed vaccination schemes that incorporated at least 1 vector-based vaccination as key feature to mount both a spike-specific CD4+ response (odds ratio, 10.67) and CD8+ response (odds ratio, 6.56). Multivariable analyses identified a specific CD4+ response but not the vector-based immunization as beneficial for a strong, specific IgG titer. Our study reveals factors associated with a T-cell response in patients with hematological neoplasia and might pave the way toward tailored vaccination schemes for vaccinees with these diseases. The study was registered at the German Clinical Trials Register as #DRKS00027372.


Subject(s)
COVID-19 , Hematologic Neoplasms , Humans , COVID-19 Vaccines , SARS-CoV-2 , ChAdOx1 nCoV-19 , COVID-19/prevention & control , Vaccination , Hematologic Neoplasms/therapy , Immunoglobulin G
2.
Cancers (Basel) ; 14(6)2022 Mar 17.
Article in English | MEDLINE | ID: covidwho-1760401

ABSTRACT

PURPOSE: To assess humoral responses longitudinally and cellular immunogenicity following SARS-CoV-2-vaccination in patients with hematologic and oncologic malignancies receiving checkpoint-inhibitors. METHODS: This prospective multicenter trial of the East-German-Study-Group-for-Hematology-and-Oncology, enrolled 398 adults in a two (patients; n = 262) to one (controls; n = 136) ratio. Pre-vaccination, day 35 (d35), and day 120 (d120) blood samples were analyzed for anti-spike antibodies and d120 IL-2+IFNγ+TNFα+-CD4+- and CD8+-cells. Laboratories were blinded for patients and controls. RESULTS: Patients belonged to the myeloid (n = 131), lymphoid (n = 104), and checkpoint-inhibitor (n = 17) cohorts. While d35 seroconversion was higher in controls (98%) compared to patients (68%) (p < 0.001), d120 seroconversion improved across all patient cohorts [checkpoint-inhibitors (81% to 100%), myeloid (82% to 97%), lymphoid (48% to 66%)]. CD4+- and CovCD8+-cells in the lymphoid (71%/31%) and control (74%/42%) cohorts were comparable but fewer in the myeloid cohort (53%, p = 0.003 /24%, p = 0.03). In patients with hematologic malignancies, no correlation between d120 humoral and cellular responses was found. A sizeable fraction of lymphoid patients demonstrated T-cell responses without detectable spike-specific-IgGs. CONCLUSIONS: Evidence of vaccine-elicited humoral and/or cellular immunogenicity in most patients is provided. Both humoral and cellular responses are crucial to determine which patients will generate/maintain immunity. The findings have implications on public health policy regarding recommendations for SARS-CoV-2 booster doses.

SELECTION OF CITATIONS
SEARCH DETAIL